Thermal activated dislocation motion

CHAPTER IX THERMAL ACTIVATED
DISLOCATION MOTION

9.1 Introduction

The speed of plastic deformation of a crystal sample is related to the density of mobile dislocations,
Am, to their mean speed V by the Orowan relation (6.17):

£=A bV

If the dislocation moved freely in the crystal (no friction, no obstacles, and no mutual interactions),
their speed would be close to the speed of sound, and - in this case - only the density of mobile

dislocations Am controls the speed of plastic deformation and the strain rate € . Nevertheless, we have
seen that in crystalline materials, the dislocations interact with different obstacles,” for example:

« the internal friction of the lattice
« the mutual interactions

- the interactions with point defects, impurities, and precipitates.

In this case, the speed of plastic deformation € is controlled not only by Am, which changes
minimally, but mainly by the mean speed of the dislocations V', which is essentially related to the
required time for dislocations to bypass these obstacles.” If the obstacles are localized, i.e., their

volume only involves a small number of atoms, thermal activation reduces the time for a dislocation
to overcome them. The stress applied to reach a certain speed decreases with temperature.

This chapter is dedicated to the thermodynamics of the thermally activated motion of dislocations.
After reviewing the expression of the strain rate as a function of the frequency at which the
dislocations cross the obstacles, the Gibbs free energy related to overcoming energy barriers is
defined. The activation volume derived from this relationship represents the number of atoms
involved. We then present some experimental techniques that allow us to access those parameters.
Finally, the dislocation climb of dislocations is explained, which depends on the diffusion of
vacancies, which, by definition, is a thermally activated phenomenon.
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9.2 Strain rate

In the classic framework of thermal activation theory, we generally
consider that the time of flight" (or glide time in this notation)

between two obstacles is short compared to the average time
necessary to cross an obstacle (escape time):

t, <<t,

We can perform "in situ" electron microscopy to observe how
dislocations move with a "jerky-type" profile.

Figure 9-1: Area swept by a dislocation during the crossing of an obstacle

If d is the total distance of dislocation motion (during and after the activation process), the average
speed of the dislocation can be written:

G d _d_Al (9.1)

where | is the dislocation line length, and A is the total area swept by the dislocation during and after
the crossing of the obstacle (Figure 9-1). In several cases, the obstacles controlling the motion of the
dislocations can be represented by energy barriers AG, of the order of 1 eV. In these conditions, the
thermal energy can facilitate the traversing of these obstacles.

Considering the dislocation comprises N atoms as a group of harmonic oscillators with fundamental
frequency vo, vo = vp(b/l) where vp is Debye frequency, we obtain from statistic mechanics theory
that the probability of success per unit time of a coherent motion by thermal activation is given by
(Granato et al., J. Appl. Phys. 35 (1964) p.2732):

2
szoexp(—ﬁ) (9.2)

where AG = AG(o, T) is the minimum variation of free energy necessary to move the dislocation
reversibly from the equilibrium position R(0) to the local maximum position Rz(c) (Figure 9-3a). This
energy is taken from the thermal vibration of the lattice. It is lower the higher the stress applied
because work goes into stress and temperature.

Considering that all obstacles are identical and they are crossed independently, we have:

So the expression for the mean speed is: V= (?]P
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From this, we finally have the following:

2
éﬂAmAvD(?] cxp(—%):éo cxp(—%) (9.3)

Remark:

Inverting relation (9.3), we have:

AG = kﬂog(%) (9.4)

where the pre-exponential term & depends essentially on the substructure of dislocations and by the

quantities A, , I, and A. These evolve in general slowly with the temperature T and the stress ¢ during
strain tests at imposed strain rate, i.e., for € = constant:

AG = akT (9.5)

where @ =108(€,/€) has 4 typical value ranging from 20 to 30. Taking for example A~ I* we have

. 2 ] —1ni2 .
€ =A,bVpand as typical values A» =10 m/m3, b=3-101" m, Yo = 108 s and €=10" s, we

obtain:
a=sn(é—°]z23 (9:6)
é
9.3 Gibbs free energy calculation during the crossing of an

obstacle

To find the expression for the variation in Gibbs free energy a dislocation incurs crossing an obstacle,
we follow subsections of the fundamental articles by Schoeck (Phys. Stat. Sol. 8 (1965) p. 499) and
by Hirth and Nix(Phys. Stat. Sol. 35 (1969) p. 177) and describe them below.

9.3.1 Analysis in terms of applied stress
a) Gibbs free energy necessary to the crossing of an obstacle

Consider the simplified case where the crystal only contains two dislocations (1) and (2). The position
and configuration are represented symbolically by R1 and Rz. The dislocation (2) represents the
mobile dislocation, whereas (1) represents the origin of internal stresses fi and is assumed sessile
while dislocation (2) moves. The thermodynamic system considered here includes the crystal and the
external sources to which it is linked. We then fix the force Fs, the temperature T, and the pressure P
applied to the crystal. Let a length I of dislocation (2) move by dR2 in a quasistatic and an isothermal
manner. We assume here that | is constant. We also suppose that dislocation (2) crosses a local
"obstacle” during the displacement, in which a force fO represents the interaction force. The work
done by the system to displace the mobile dislocation (2), in other words, the work needed to move
the two margins of the cut surface, one with respect to the other, is given by the following expression:

dW = f,(T R,,G,)dR, + f,(R,, R,)dR, — 0,(T , R, bldR, + F,(T dx ~ PdV 9.7)
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In this expression:

« /o(T,R,,0,)dR; s the variation of elastic energy due to the obstacle. The force fois a way to model
the interaction of dislocation (2) with the obstacle. Suppose fO has a meaning in the case of a purely
elastic interaction. In that case, it only represents an image for mechanisms such as the deformation
of jogs and dislocation deviations.

S é \

Figure 9-2: Diagram of the interaction with a dislocation of the forest

tree

. fiR, Ry)dR; s the work due to the internal stresses acting on the cut surface in the direction
opposed to b. Because of its delocalized character, the force f; cannot correspond to any thermal
activation. It does not explicitly depend on temperature T, but it could depend on it implicitly
through R.

0,(T', R,)bldR, s the work of the external force Fa on the cut surface in the direction of b according
to the Peach and Koehler equation (7.31). This term has a negative sign because its internal energy
is decreased when the dislocation comes out of the crystal.

« PdV is the work of the external pressure (if the displacement creates a change in the volume of the
crystal)

« F.(T)dx i5 the work of the external force Fa if its application point moves by dx due to dislocation
(2) displacement.

We can prove (Colonnetti's theorem) that:

F.(T)dx—o,(T,R,)bldR, =0 (9.8)
This means that in practice, and without friction, the crystal's energy variation is zero when the
dislocation is extracted. However, if the displacement of dislocation (2) occurs in a reversible and
isothermal way, the internal energy variation of the crystal is:

dE =TdS +dW =TdS+ fdR, + f,dR, — PdV (9.9)

where dS is the entropy variation of the system due to the change in the volume of the crystal and to
the change in the vibrational states caused by the introduction of fj and fo.
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Figure 9-3: Force-displacement (a) and energy-displacement diagram (b) during the crossing of an energy barrier
The Gibbs Free energy of the system is defined by:

G,=E+PV-TS—Fx (9.10)

Its variation is then, by using the previous relations and with the conditions: fa =¢€onst P =const
T = const R, =const .

dG, = f,dR, + fdR, — o bldR, (9.11)

By comparing this expression with equation (9.9), we note that the dislocation displacement (without
friction) does not change the internal energy but the free energy. Consider now the case in which
dislocation (2) goes from an equilibrium position R2(0) to a local maximum position R2(c), and we
have the following relations:

Ry(c) aG R;y(c)
AG,= | (aR“)dRQ = [ Uf,+f,—oblldR,
Ry (0) 2 Ry (0)
or
Ry(c)
AG,= [ (f;+f)dR,—0 bIAR, 9.12)

R3(0)

where AR; =R, (¢)— R,(0)
b) The activation volume

Considering the state variables @=and T, we can write:

AG,

do,+ 9AG,
do

d(AG,)= T

dT (9.13)

G{J,PeR]

a IT.P.R,

The quantity(AGa)”aa being homogeneous to a volume, we define thus an activation volume:

AG
y, = 24C

_ (9.14)
¢ 00

a I7,P,R,
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By expression (9.12) for AG, .

Ry(c)
Va=—i[ | [f0+ﬁ—0'abl]dR2J (9.15)
J0, Ry (0)
Using Leibniz formula
a[“y da da, og(x,y)
2 y)dx |= ) e B ) paca Y - ASAZR 2 (9.16)
. (GDIU.)g(x y) } R ks +f S
We obtain:
0AG dR,(c¢) JAG dR,(0) ¢ 0
V, = +— 2 [f,+ f,— 0 blldR, (9.17)
OR, |, ., R,  OR, |, do, -0[80' ’

a

The first two terms of (9.17) are zero because R,(0) ang Ra(©) gre equilibrium points (maxima or

dAG
: =0
[ aR2 ]FQ,P,T_.R]

V. =bIAR, —jaaf dR, (9.18)

minima), and thus

Therefore:

In the case of a rigid obstacle - in other words- when the interaction force between the obstacle and
the dislocation does not depend on the applied stress ca, or when the form of the energy barrier (Figure
9-3b) does not depend on aa, We have:

V, =bIAR, (9.19)

IAR,

where represents the area swept by the dislocation during the activation (Figure 9-1).

Remarks:

- WhenV, is expressed in b® units (~ atomic volume), this represents essentially the number of atoms
the activation involves.

- The variation of Gibbs free energy can be written in a first-order approximation as:

AG,=AG, +0, [B;G“ ) =AG,-0o,V, (9.20)
or
AG, =0V, +len(€—f’) (9.21)
E

The first term on the right of (9.21) represents the portion of /associated with the work done by the
applied stress, and the second term represents the thermal energy contribution.
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During the crossing of an obstacle, stress and temperature share the work." Suppose, in principle,

that any obstacle can be crossed by only applying stress (i.e., a sufficiently strong force below the de-
cohesion force of the crystal). Moreover, it is not always the case that overcoming an obstacle is
facilitated by increasing temperature. The number of atoms involved in overcoming obstacles should
not be too high because the probability of exciting them simultaneously by thermal agitation becomes
low. Therefore, the thermal activation theory only applies to small obstacles and thus is very
localized. For thermal activation to have a significant impact, the two previous contributions must be

of the same magnitude. That is, for AG, ~1

equations (9.6) and (9.21)):

eV, we must be within a temperature range such that (see

25kT ~0.5eV—>T ~230 K (1ot s say below Tamb)

and a stress range:
o,V,=05eV ~0.1ub*

2 _ 3 ) _ 3
That is to say O« ~ 107 Koy Va=10b"y4 0, ~107 pigq, V, =10005"

Remarks:
- Viis not the true thermodynamic activation volume AV defined by:
Ay =946, (9.22)
P |, .

In fact, V. does not correspond to a real volume change but a shape change.

- Oahas an impact on AG, only through the force per unit length o.b , and thus Vaalways has the
absolute value of the Burgers vector b as a factor. To avoid any confusion, we often define an
activation area:

__L1dG, (9.23)
‘ bao,|, .
The entropy change or activation entropy is defined by:
24
AS, = — JAG, (9.24)
aT o, PR
and the variation of activation internal enthalpy is:
JAG J(AG, /T)
AH,=AG,+TAS,=AG,-T e =——"_—=
a i a i aT dd‘P,Rl a(]__l'rT) (925)

6,.P.R,

AH AG

adefined in (9.25) only differs from the free enthalpy variation
f AG

a when the latter depends on

T. The sources of entropy coming from the dependency o
following:

« with temperature are essentially the

- The variation of the elastic constants Cy constitutes the most significant contribution (Basinski,
Phil. Mag. 4 (1958) p. 393).
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- the creation of point defects, AS, ~k (see 4.43), which is then generally negligible.

- The variation of the vibration frequencies of the neighboring atoms of the dislocation when the
dislocation crosses the obstacle. This term is poorly known.

- The thermal dilatation of the lattice is typically an order of magnitude smaller than the one due to
the elastic constants change (Surek et al., Scripta Met. 7 (1973) p. 1131).

We again use the Leibniz relation (9.16), and the fact that we consider %« to be constant, we have:
¢ o
AS, =—|—I[f, + f1dR
’ I S Lfo+ f1dR,

In the majority of cases, foand Jiare proportional to the shear modulus p and vary with temperature
as w(T), so that we can write:
fo(T,0,,R)=ph(0,,R,) gng Ji(R,, R,)= puf,(Ry)

where h and fu do not explicitly depend on temperature, so that:

__OHT
A, =-= ![h+fmu]d&

From which expression (see (9.12) and (9.20)):

AH + r a—‘u o,V.)
AS = p oT (9.26)
@ 1— T ou
uor
Finally, the activation parameters previously defined must satisfy the compatibility relations:
v, _ 0AS, (9.27)
or Ga. PRy ao-a T.P.R
AH A
JAH, =Ta S, (9.28)
aT g, P.R aT .. PRy

9.3.2 Analysis in terms of effective stress
a) Introduction to an internal athermal” stress

AG,

Expression (9.21) of the energy barrier implies that, in a strain test at a constant strain rate, the

elastic yield strength @« must vary with the temperature T following the relation:

0, =50~ %)
Vv V é

a a

This expression leads to the conclusion that beyond a specific critical temperature T, equal to:
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% (9.29)
kln é}‘ '

£

T,(6)=

We must have %« = 0 For such temperatures, thermal enerqgy is only sufficient to exceed the energy

barrier AG0 without the need for applied stress; the obstacles of height AGy 4o not make any
resistance against the gliding of the dislocation. On the contrary, experience rather indicates a

variation ©«(I) with a non-zero athermal asymptote. This suggests writing @« as the sum of two
stresses (Seeger, Dislocations and Mechanical Properties of Crystals, John Wiley and Sons (1957)
p. 271):

* one is due to the localized obstacles, 0" that is called the effective stress, which varies with
temperature by thermal activation;

« the other is due to the internal” stress fields at long range @i, called internal stresses, responsible

for the athermal asymptote.
o' =0,-0, (9.30)

Figure 9-4: Evolution of the elastic yield stress (normalized) or flow stress as a function of temperature. We can notice
an athermal asymptote o/

Remarks:

- Adding an effective stress O and internal stress 9i we can determine the applied stress %a
implicitly, assuming that the stress fields of these two kinds of obstacles superpose in the crystal

(Figure 9-5), i.e., the stress 9 is essentially nonlocalized as opposed to o

« Consequently, the internal stress @i cannot correspond to any thermal activation. In other words, ©:
is explicitly independent of temperature. Nevertheless, @i can depend implicitly on temperature
through the shear modulus 4, to which Ciis proportional. We often measure then @i/ # by taking
the value of the athermal asymptote of the curve %« /M as a function of T.
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* The internal stress @i can equally depend on temperature from the way the structure of the
dislocation distribution varies with T. However, this dependency should be weak since the statistical

character of Ciis little affected by the details of this distribution.

The internal stress 9:, opposed to the displacement of the dislocations, is assumed constant, which
is a reasonable assumption for a mobile dislocation having a displacement at least of the order of |

(the size of the lattice parameter). As discussed in the previous chapters, the internal stress % can be
schematically represented as a stress field oscillating in space around a zero mean value, with a two-
dimensional period of the order of | and amplitude (see 7.5.6):

-

Figure 9-5: Variation of the stress field as a function of dislocation displacement. Effective stress and internal stresses
superpose.

In this stress field, the dislocation has a curvature R* sufficient to avoid the zones of maximum

R=L

g2
¢ for a line tension ¥ = Hb

For a displacement over a distance larger than or equal to |, it's difficult to cross zones where the

stress :is maximum. It is prevalent in studies on elastic yield stress and flow stress. In other studies
for which the strains are small (the distances covered by the moving dislocations are small compared
to the size of the Frank network), one must consider the internal effective" stress @i, which smooths
those local variations.

9.4 Measure of thermodynamic quantities

Different experimental setups can determine the thermodynamic quantities with variable
temperatures, stresses, or strain rates. In general, to minimize the structural variations of the samples,
we use different techniques in which parameters can be readily varied or held constant.

Here, we consider the thermodynamic system of the entire sample, corresponding to the variables

&7 and G., on which the experimenter can act directly. These variables are measured through

different tests, such as strain, one-dimensional axial tensile or compressive, or bending tests. Two
principal tests exist creep tests, in which we observe the strain rate as a function of time at several
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temperatures and stresses (held constant and referred to as dead load tests), and strain tests at an
imposed strain rate, in which we observe the stress as a function of the strain. These experiments can
provide directly three kinds of parameters:

ding| diné| 9o,
dc,| T |, or

diné

a) variation of the applied stress 90, |,

£

This parameter can be measured:

* by jumps in the strain rates (Figure 9-6a) or in the relaxation of the stress (Figure 9-6b) during
strain tests done at imposed constant strain rates;

* by jumps in the stress during creep tests at constant temperature and stress (Figure 9-6c).

The kinetics of plastic deformation previously introduced is:

AG, = KT Ine ne=—2% L 1ng
€ that is kT
Recalling the expression of the activation volume Va:
__0AG,
do, |.

We can state that the quantity Ve, Which is measured by strain rate jumps or stress jumps %= during
a creep test, is:

V. kT dlné

exp

(o)

a

(o)

a

] =va+kTM] (9.31)
T T

t

£

Figure 9-6: Measure of the sensibility of the strain rate to the stress during imposed strain rate tensile testing: (a) by a
jump in the strain rate, (b) by relaxation of the stress, (c) by a jump in the flow stress.

Thus, the activation volume that is determined experimentally Vex is only equal to the thermodynamic
volume Va when the pre-exponential term €ois often expressed as:
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£, = Bo]

m
Veo =V +kT[—J (9.32)

With this assumption: g,

and Va is only accessible when the term m k7/oa is negligible, i.e., generally far from the
athermal plateau (where g2 becomes small).

diné

b) Temperature variations o |,
This parameter can be measured during tests at imposed stress (creep):

* by a jump in temperature (Figure 9-7a);

* by conventional tests done at different temperatures (Figure 9-7b)

During a creep test, we obtain by temperature jump:

diné| _ 19(AG,/T)| _ dng,|

or|, k or |~ or|,

Now, we have that:

13(AG,/T)| _ 1 3AG,/T) _AH,
k oT |, kT* 9aQ/T) |, &I°
We then measure the following:
dlné|  AH, dlné,|
oT |, kT* " 9T |,
With:
olné
AH, =kT*——
exp aT ..
dIng,

AH, =AH,+KkT?

exp

(9.33)

Oq

t

Figure 9-7: Variation in the creep speed realized during tests at imposed stress (creep) (a) by stress jump and (b) by
temperature jump
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9.5 Climb of dislocations

951 Introduction

For edge dislocations to move outside their glide plane, matter must be removed or added to its extra
half-plane (Figure 9-8) and (Figure 9-9). Nevertheless, the formation energy of an interstitial being,
in general, is very high compared to that of a vacancy. As such, dislocation climb tends to be
exclusively mitigated by the absorption or emission of vacancies. Dislocation climb can be essentially
reduced to studying different fluxes of vacancies between the dislocation considered and the potential
sources or sinks of vacancies, which are all free external surfaces, grain boundaries, and dislocations.
These fluxes obey Fick's law and can be driven by the differences in concentration or the chemical
potential of vacancies between different crystal sources.

Initial Position Unstahle Position Final Position

Creation of
an intersitial

Absorption of
an intersitial

Figure 9-8: Climb by interstitial mechanism (* indicates the metastable position)

Initial Position Unstable Position Final Position

- Creationof a
vacancy

-; Absorption of a
vacancy

Figure 9-9: Climb by vacancy mechanism (* indicates the metastable position)
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9.5.2 Geometric aspect of the climb

Any dislocation with an edge character can be considered the limit of an extra half-plane,” even
though the corresponding atoms are not all located in the same plane. Thus, the dislocation climb
corresponds to the removal (or the supply) of a given number of atoms equal to the volume bounded
between the two half-planes and by the dislocation line with thickness b, equal to the Burgers vector
of the dislocation (Figure 9-10).

If the dislocation line L, with length I, forms an angle y with its Burgers vector ((éj,b)z COS¥'y and
it moves perpendicularly to its glide plane (GP in the Figure) by a distance b, the volume of the
absorbed (or emitted) atoms is:

V=(EAb)- b
We can understand this by considering the two extreme cases of an edge dislocation and a screw

dislocation. In the first case, one atom is absorbed per each atomic site; in the second case, there is
no need to absorb atoms, and there is no climb, only gliding.

To keep the notation simple, we suppose b = b in what follows, and thus:
V. =(b’siny

corresponding to the number of atoms N in the volume Q = b®:

/
N =—sin
b "4

G oo
N O ® * | ;
8 1 1
© b
L o) ® | :
=
©
c
® ©
-
%
v
. o .
GP s

Figure 9-10: Atoms and atomic planes involved in the climb of a dislocation
The absorption (or the emission) of vacancies is principally done at the level of the existing jogs,

which have a concentration Cj equal to the number of jogs on the line over the number of possible
sites, that is:
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C - n _np (9.34)

J ¢\ siny
b/siny

The distance b/(siny) represents the displacement of a jog during the absorption (or the emission) of
a vacancy. Nevertheless, only a distance of the order of b corresponds effectively to the vacancy's
absorption (or emission) during the displacement. The rest corresponds to a simple jog sliding (see
9.5.5). In what follows, we consider an edge dislocation as simply siny = 1.

Remark:

953 Forces on a Dislocation

The total force on a dislocation is obtained starting from the free energy of a crystal during the
emission of the vacancy by the dislocation. The dislocation is a source of vacancies with potential zvq
(the chemical potential of vacancies on the dislocation), which becomes v in the crystal, giving a
change in free enthalpy:

dG = [, — 1,
Several factors can influence this potential:

* Vacancy concentration C in the crystal is different from the equilibrium concentration Cy (4.28),

kT ln{g)
which varies the source potential by: Cy

- Application of a stress o on the crystal. This creates an elastic force £+ = obdl o, the dislocation.
We note that F. represents the Peach and Koehler force components in the climb plane of the
dislocation. It corresponds, for example, to a compression of the crystal, which pushes up the extra
plane of an edge dislocation, like a wet bar of soap squeezed in your hand. We usually consider Fe to
be positive if it promotes the emission of vacancies from the dislocation. The work of the force Fe
during the creation of vacancies is given (see section (7.5.1)) by the product of the force ¢b and the
swept area dA during the displacement of a jog:

dA = b? (9.35)
We then have the following:
ob’ (9.36)

- Line tension. A dislocation showing a local curvature radius R, taken with a negative sign if the

center of curvature is located in the extra half-plane, tends to emit vacancies to regain its equilibrium

position. In this case, the line tension t helps the formation of vacancies in the crystal. We know that
T

~ob (7.36). Thus, the chemical potential of the vacancy in the crystal decreases by a value equal
to (zb%)/R.

To summarize, if uvc is the chemical potential of a vacancy in the crystal, we have:

C b’
Hye = Hya =kﬂn[c—v}—ﬂbs "R (9.37)
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In the case of a straight dislocation, the variation of free energy during the creation of a vacancy is
then:

C
dG = ly, — My, =kTin{C—J—0'b3 (9.38)

Vv
whereas the area swept by the line during this event equals:
dA=b’

The quantity dG/dA has the units of a force per unit length and must be then considered as the force
F per unit length applied on the dislocation line in its climb plane, that is, in this case:

Ezﬁb—%ln Clr-F
dl b\,

where the first term, Fe, represents the force due to the stresses, and the second term comes from the
over- or under-concentration of vacancies and is called oversaturation or chemical force:

F kT . (cC (9.39)
s =2l =
dl b

Cy

The dislocation is in equilibrium when the force F is zero, which corresponds to a concentration of
vacancies surrounding the dislocation equal to:
crbs) (9.40)

C=C, exp[ T

and when the force F is different than zero, the dislocation moves in its climb plane. In the absence
of thermal activation (T=0 K), the condition on the stress ¢ necessary for dislocation climb can be
calculated by setting the work of the force F and the formation energy of a vacancy equal to each
other, as follows:

ob’ = AGE

3 F
From which with 40"~ 5 €V gng AGy ~1eV e get a stress ¢ within an order of a magnitude:

That is close to the theoretical elastic yield stress (except for the dislocations closer to the screw type).
We can deduce from this that the climb of dislocations is possible only with the help of thermal
activation. Therefore, it is a relevant phenomenon only at high temperatures.

9.54 Bardeen-Herring sources

We now consider the case where the dislocation is bent without applying any force on the sample
during the inflow of vacancies. The variation in free energy is given this time by:
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c )\ b’
dG = Wy, — ty, :kTh{C_VJ_?

As before, dG/dA gives the force per unit length being applied on the dislocation:

F —kT C T
— = > Inl = |+—
a b \c,) R

The line tension tends to bring back the dislocation to a straight configuration. Thus, the condition
for which the dislocation can climb by the inflow of vacancies is only when:

T K fc
R b \C,

This mechanism is analogous to Frank-Read sources, but the oversaturation of vacancies does the

£
R>—
climb. Thus, as already seen in 7.5.6b, taking t = oub? and 2 we will have:
4
in| £ |5 200" (9.41)
C, kT
—

B

(O

Figure 9-11: Bardeen-Herring source by the climb of dislocations: the climb plane lies in the plane of the page

Application

£x1.02

Aluminum: H=25[GPal,b=2.3 [A], £=10" [m],T = 500 [K] implies Cy . Thus,
oversaturation of 2% of vacancies can activate the sources with a length of 1 um.

an

9.5.5 Velocity of the climb of a dislocation

We have seen that vacancies' absorption or emission occurs principally at the jogs. Therefore, we
expect the dislocation climb velocity to be controlled by the Velocity of the jogs.
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a) General case

When a jog moves along a dislocation of length I, the dislocation moves by a distance b in its climb
plane (Figure 9-12).

Figure 9-12: Climb of dislocation by the forward motion of a jog

If Vj is the displacement velocity of the jog, the climb velocity of dislocation V is given by:

b by,
@Iy o
This result must be multiplied by the number of jogs (nj) along the dislocation line, that is (see (9.34)):
bVn,
V= ;7 cV, (9.42)

In this formulation, the problem comes down to finding the displacement velocity of the jogs. Then,
each time that these absorb or emit a vacancy, they move by a distance b corresponding to a velocity:

V;=bAv (9.43)
where AV is the difference between the vacancies emission frequency and absorption

frequency, 2V =V~ V. hence:
V=bC Av
J

We must then evaluate Av. This calculation is performed for a pure edge dislocation, as an additional
screw component would make the situation more complex.

b) Case of a jog on an edge dislocation

The emission frequency of vacancies is related to the
enthalpy necessary for a jog to emit a vacancy.

This requires the jog to move from position C to position
C (Figure 9-13), which requires a formation energy /.

: In the presence of a force F;, this energy decreases by cb®
C C (the work the applied stress does when C goes to C).

Figure 9-13: Jog moving from C to C’
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In this unstable situation (Figure 9-9), the vacancy must switch site with an atom from the lattice,
AGy' e can now obtain the emission frequency:

resulting in an additional migration energy:

-AG} -ob’ ~AG)
v, = —r 9.44
e exp[ T }zvgexp[ T (9.44)

For a jog to absorb a vacancy, the latter must be on a neighboring site for the switch to occur. The
absorption frequency then equals the frequency of the jumps times the probability of finding a

vacancy in an adjacent site, which gives:
[ AG” (9.45)
v, =Czv,exp| ———
a D p- kT :|
In the absence of stress, we must have AV =0 at equilibrium, hence:
AG,
exp| - -C=0
kT |

corresponding to an equilibrium concentration of:
AG,
C=C,=exp| —
v p|: T :|

If the concentration C is different from the equilibrium concentration CV, we have (9.39):

ﬂbﬁ
dar
C=C,exp| ——
v €Xp T
V,—V,=2zVp€ex —AG‘T ex —M -C (9.40)
e a D p kT p kT
Considering that (5.14):
AG) AG) )
vV, exp| — exp| — =6D, /b
Dp|: kTi|p|: kTi| SD
We finally get:
I;_‘e bﬁ
6D ob’ 7
Ay =—Llex - e
b P[ kT} P T (9.47)
where Pso s the self-diffusion coefficient.
3 2
Several cases can occur according to the values of b and (F: 1400 yith respect to kT.
3 2
iyOb’ and (F./dOB* ¢ it
By expanding the exponentials, we get the following:
- 6D,,C.(cb> —(Fb)/(dl 9.48
Av=6DSDGb F./(d?) _6D5,C( (Fb)/(dr)) (9.48)
kT or else kT
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It is Einstein s relation (see chapter 5.4). In this case, the activation energy is equal to the self-

diffusion energy, possibly increased by the formation energy of jogs (AGJ ~0.1ev ).

i) 005> kT and (F/dOb << i1
We have:

3 6D,,C. 3
Av=6§jﬂ cxp|:ab ] V= ;D “’exp[o-b :|
KT ] or else KT ] This case results in significant

elastic forces, like those found at the front of a pileup of dislocations or those due to substantial
dislocations concentrations. The activation energy is equal here to the self-diffusion energy minus
the term ob° and possibly increased by the formation energy of a jog.

(9.49)

iii) 00 << kT and F/dOb" 55 i1

In this case, we have:

2
6D, exp[b F,/(d0) _ (9.50)

} 6D,,C, [bzf; ;’(df)}
kT or else b

kT

We are here in the presence of an oversaturation of vacancies, AV is negative, and the activation
energy is reduced to the self-diffusion energy, possibly even decreased by the oversaturation term.

c) Particular case: jogs on a screw dislocation

If we consider jogs (outside of the climb plane) on an edge dislocation, we can notice that there is no
possible way for these to affect the motion of the dislocation. On the contrary, for screw dislocations,
jogs always have an edge character, and as a consequence, they can only move by climb if they are
to preserve their Burgers vector. However, if the dislocations move in another plane, it can drag the
jog segment, leaving a line of vacancies or interstitial defects, according to the sign of the jog.

PREN
I o

Vacancies

Figure 9-14: Climb of a screw dislocation with jogs
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If we consider the case in Figure 9-14, we can implement the form used in § 9.5.5a by taking into

account that this time, the external stress acts on jogs of length | and as a consequence F,=ofb

2 2
Av = I;Sf {exp[(yi; ]—cxp[ib Fska(df)}} , (9.51)
If o3 and (F/dOb” << kT, we have a
relation of Einstein s kind:
Av = D, crbzf-szs 1(d¥) V= Dg,C b(c{—F;/(dl)) (9.52)

b kT or else kT

9.5.6 Climb governed by diffusion in the crystal

Until now, we have essentially considered that the absorption or the emission of vacancies by jogs
controls the climb velocity of a dislocation. However, these velocities were relatively low compared
to the arriving or leaving speed.

Inverting this approach, we can ask ourselves. What happens when the absorption velocity of
vacancies is high compared to their arriving Velocity? In this case, we can show that the climb of the
dislocation depends on the self-diffusion coefficient and the activation volume of a vacancy ob®.

We consider this a straight-edge dislocation in a crystal, and we suppose the vacancies have their

equilibrium concentration Cvona cylinder with a radius R, around the dislocation. In a radius Ry of
some multiples of b, the probability of absorbing the vacancy is assumed to be 1.

We get:
)
1—exp
Ve 2nR,D,C, kT
Rl
3
G peing the stress in the climb plane. Assuming 0,b" <<kT (which is often a good approximation)
and taking R, ~ b, we get:
Ve 2nD,C, ob’ _ 2nD,, ob’ (9.53)
bkT R, bkT R,
In| =2 In| —
R b
9.5.7 Application to stationary creep
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\ What we call stationary creep corresponds to the linear part of
Figure 9-15. It occurs for higher stresses than in the case of
" Nabarro-Herring creep (see exercise 6).
!

g Most of the strain comes from the gliding of dislocations,
during which obstacles progressively block them. The climb
for dislocation with non-screw character (or the cross-slip for
screw dislocations) can help release these dislocations and
glide until the next obstacle.

Figure 9-15: Creep curve

The steady state of creep results in a dynamic equilibrium between blocking and releasing, which
alternatively means that the gliding of dislocations is controlled by the climb motion (or the cross-
slip) at the obstacles (Figure 9-16).

Figure 9-16: Glide scheme of a dislocation crossing obstacles by climb motion

The flight time or glide time ¢ between two obstacles is very short compared to the escape time. On
the other hand, the distance | between obstacles is larger than the distance h to be covered by climb
(or cross-slip). The average Velocity is then written as:

¢

t +t
N

V =~

2N 4
=—=/-=
t h

where Ve ="/1js the escape velocity, a characteristic of the mechanism controlling the releasing of

dislocations, Orowan s law gives here a strain rate of:
vV
€=A,bl=x (9.54)

If we consider that the obstacles are the dislocations of the forest and that the density pm of mobile
dislocations is a constant fraction of the total dislocation density A and that the same goes for the

forest s density Am, then.

1
AmocAfocAﬂf_z
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where £is the mean distance between the obstacles. At steady state, we have:
O =0, xJXm ,/Am

which can be written in a non-dimensional form as a function of o/p:

A M[ET (9.55)
"o\u

2
£ oc [EJ A
u h

If finally, we admit that - even though I and h could depend on o, (£/h) does not:

2
.e'oc[a) Vb
U

This expression depends on the escape velocity";(this value was previously calculated for climb
velocities). For example, in the case in which the relaxation mechanism is controlled by climb,
governed by the diffusion in the crystal (9.53):

We get the following:

We then get:

3
€= Ac—exp(—h]
kT kT (9.56)

This type of creep is only an example. More refined assumptions can lead to equations that generally
have the form (Dorn law):

é=Ac" exp(—ﬁ) (9.57)
kT

with exponents for the stress that could be different than n = 3.

Physics of materials Chapter IX page 197



