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CHAPTER IX  THERMAL ACTIVATED  

DISLOCATION MOTION 
 

 
 
 

9.1 Introduction 
 

The speed of plastic deformation of a crystal sample is related to the density of mobile dislocations, 

Λm, to their mean speed by the Orowan relation (6.17): 

 

  
 

If the dislocation moved freely in the crystal (no friction, no obstacles, and no mutual interactions), 

their speed would be close to the speed of sound, and - in this case - only the density of mobile 

dislocations Λm controls the speed of plastic deformation and the strain rate . Nevertheless, we have 

seen that in crystalline materials, the dislocations interact with different obstacles," for example: 

 

• the internal friction of the lattice 

• the mutual interactions  

• the interactions with point defects, impurities, and precipitates. 

 

In this case, the speed of plastic deformation is controlled not only by Λm, which changes 

minimally, but mainly by the mean speed of the dislocations , which is essentially related to the 

required time for dislocations to bypass these obstacles." If the obstacles are localized, i.e., their 

volume only involves a small number of atoms, thermal activation reduces the time for a dislocation 

to overcome them. The stress applied to reach a certain speed decreases with temperature. 

 

This chapter is dedicated to the thermodynamics of the thermally activated motion of dislocations.  

After reviewing the expression of the strain rate as a function of the frequency at which the 

dislocations cross the obstacles, the Gibbs free energy related to overcoming energy barriers is 

defined. The activation volume derived from this relationship represents the number of atoms 

involved. We then present some experimental techniques that allow us to access those parameters. 

Finally, the dislocation climb of dislocations is explained, which depends on the diffusion of 

vacancies, which, by definition, is a thermally activated phenomenon.
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9.2 Strain rate 
 

 

In the classic framework of thermal activation theory, we generally 

consider that the time of flight" (or glide time in this notation) 

between two obstacles is short compared to the average time 

necessary to cross an obstacle (escape time): 

 

   
 

We can perform "in situ" electron microscopy to observe how 

dislocations move with a "jerky-type" profile. 

 

 
 

Figure 9-1: Area swept by a dislocation during the crossing of an obstacle 

 

If d is the total distance of dislocation motion (during and after the activation process), the average 

speed of the dislocation can be written: 

 

   
 

where l is the dislocation line length, and A is the total area swept by the dislocation during and after 

the crossing of the obstacle (Figure 9-1). In several cases, the obstacles controlling the motion of the 

dislocations can be represented by energy barriers ΔGo of the order of 1 eV. In these conditions, the 

thermal energy can facilitate the traversing of these obstacles. 

 

Considering the dislocation comprises N atoms as a group of harmonic oscillators with fundamental 

frequency ν0, ν0 = νD(b/l) where νD is Debye frequency, we obtain from statistic mechanics theory 

that the probability of success per unit time of a coherent motion by thermal activation is given by 

(Granato et al., J. Appl. Phys. 35 (1964) p.2732): 

 

  
 

where ΔG = ΔG(σ, T) is the minimum variation of free energy necessary to move the dislocation 

reversibly from the equilibrium position R(0) to the local maximum position R2(c) (Figure 9-3a). This 

energy is taken from the thermal vibration of the lattice. It is lower the higher the stress applied 

because work goes into stress and temperature.  

 

Considering that all obstacles are identical and they are crossed independently, we have: 

  

 
 

So the expression for the mean speed is:  

(9.1) 

(9.2) 
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From this, we finally have the following: 

 

  
Remark: 

 

Inverting relation (9.3), we have: 

  
 

where the pre-exponential term depends essentially on the substructure of dislocations and by the 

quantities , l, and A. These evolve in general slowly with the temperature T and the stress σ during 

strain tests at imposed strain rate, i.e., for constant: 

 

  
 

where has a typical value ranging from 20 to 30. Taking for example , we have 

and as typical values m/m3, b=3∙10-10 m, = 1013 s-1 and s-1, we 

obtain: 

 

    

 
 

9.3 Gibbs free energy calculation during the crossing of an 

 obstacle 
 

To find the expression for the variation in Gibbs free energy a dislocation incurs crossing an obstacle, 

we follow subsections of the fundamental articles by Schoeck (Phys. Stat. Sol. 8 (1965) p. 499) and 

by Hirth and Nix(Phys. Stat. Sol. 35 (1969) p. 177) and describe them below. 

 

9.3.1 Analysis in terms of applied stress 
 

a) Gibbs free energy necessary to the crossing of an obstacle 

 

Consider the simplified case where the crystal only contains two dislocations (1) and (2). The position 

and configuration are represented symbolically by R1 and R2. The dislocation (2) represents the 

mobile dislocation, whereas (1) represents the origin of internal stresses fi and is assumed sessile 

while dislocation (2) moves. The thermodynamic system considered here includes the crystal and the 

external sources to which it is linked. We then fix the force Fa, the temperature T, and the pressure P 

applied to the crystal. Let a length l of dislocation (2) move by dR2 in a quasistatic and an isothermal 

manner. We assume here that l is constant. We also suppose that dislocation (2) crosses a local 

"obstacle" during the displacement, in which a force f0 represents the interaction force. The work 

done by the system to displace the mobile dislocation (2), in other words, the work needed to move 

the two margins of the cut surface, one with respect to the other, is given by the following expression: 

 

 

 

 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 
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In this expression: 

 

• is the variation of elastic energy due to the obstacle. The force f0 is a way to model 

the interaction of dislocation (2) with the obstacle. Suppose f0 has a meaning in the case of a purely 

elastic interaction. In that case, it only represents an image for mechanisms such as the deformation 

of jogs and dislocation deviations. 

Figure 9-2: Diagram of the interaction with a dislocation of the forest 

 

• is the work due to the internal stresses acting on the cut surface in the direction 

opposed to b. Because of its delocalized character, the force fi cannot correspond to any thermal 

activation. It does not explicitly depend on temperature T, but it could depend on it implicitly 

through R1. 

• is the work of the external force Fa on the cut surface in the direction of b according 

to the Peach and Koehler equation (7.31). This term has a negative sign because its internal energy 

is decreased when the dislocation comes out of the crystal. 

• is the work of the external pressure (if the displacement creates a change in the volume of the 

crystal) 

• is the work of the external force Fa if its application point moves by dx due to dislocation 

(2) displacement. 

We can prove (Colonnetti's theorem) that: 

 

 
 

This means that in practice, and without friction, the crystal's energy variation is zero when the 

dislocation is extracted. However, if the displacement of dislocation (2) occurs in a reversible and 

isothermal way, the internal energy variation of the crystal is: 

 

 
 

where dS is the entropy variation of the system due to the change in the volume of the crystal and to 

the change in the vibrational states caused by the introduction of fi and f0.  

(9.8) 

(9.9) 
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Figure 9-3: Force-displacement (a) and energy-displacement diagram (b) during the crossing of an energy barrier 

 

The Gibbs Free energy of the system is defined by: 

 

  
 

Its variation is then, by using the previous relations and with the conditions: , , 

, : 

 
 

By comparing this expression with equation (9.9), we note that the dislocation displacement (without 

friction) does not change the internal energy but the free energy. Consider now the case in which 

dislocation (2) goes from an equilibrium position R2(0) to a local maximum position R2(c), and we 

have the following relations: 

 

  
or 

  

where  

 

b) The activation volume 

 

Considering the state variables and T, we can write: 

 

  
 

The quantity being homogeneous to a volume, we define thus an activation volume: 

 

  

(9.10) 

(9.11) 

(9.12) 

(9.13) 

(9.14) 

E
n
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y
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By expression (9.12) for : 

  
Using Leibniz formula 

 

  
 

We obtain: 

  
 

The first two terms of (9.17) are zero because and are equilibrium points (maxima or 

minima), and thus  

 

Therefore: 

  
 

In the case of a rigid obstacle - in other words- when the interaction force between the obstacle and 

the dislocation does not depend on the applied stress σa, or when the form of the energy barrier (Figure 

9-3b) does not depend on σa, we have: 

  
 

where represents the area swept by the dislocation during the activation (Figure 9-1). 

 

Remarks: 

 

• When     is expressed in b3 units (~ atomic volume), this represents essentially the number of atoms 

the activation involves. 

• The variation of Gibbs free energy can be written in a first-order approximation as: 

  
or 

  
 

The first term on the right of (9.21) represents the portion of /associated with the work done by the 

applied stress, and the second term represents the thermal energy contribution. 

 

(9.15) 

(9.16) 

(9.17) 

(9.18) 

(9.19) 

(9.20) 

(9.21) 
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During the crossing of an obstacle, stress and temperature share the work." Suppose, in principle, 

that any obstacle can be crossed by only applying stress (i.e., a sufficiently strong force below the de-

cohesion force of the crystal). Moreover, it is not always the case that overcoming an obstacle is 

facilitated by increasing temperature. The number of atoms involved in overcoming obstacles should 

not be too high because the probability of exciting them simultaneously by thermal agitation becomes 

low. Therefore, the thermal activation theory only applies to small obstacles and thus is very 

localized. For thermal activation to have a significant impact, the two previous contributions must be 

of the same magnitude. That is, for eV, we must be within a temperature range such that (see 

equations (9.6) and (9.21)): 

 

  (let s say below Tamb) 

and a stress range: 

  
 

That is to say for to for . 

 

Remarks: 

 

• is not the true thermodynamic activation volume defined by: 

  

In fact, does not correspond to a real volume change but a shape change. 

 

• has an impact on only through the force per unit length , and thus always has the 

absolute value of the Burgers vector b as a factor. To avoid any confusion, we often define an 

activation area: 

  
 

The entropy change or activation entropy is defined by: 

 

  
and the variation of activation internal enthalpy is: 

 

  
 

defined in (9.25) only differs from the free enthalpy variation when the latter depends on 

T. The sources of entropy coming from the dependency of with temperature are essentially the 

following: 

• The variation of the elastic constants  constitutes the most significant contribution (Basinski, 

Phil. Mag. 4 (1958) p. 393). 

(9.22) 

(9.23) 

(9.24) 

(9.25) 
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• the creation of point defects, (see 4.43), which is then generally negligible. 

• The variation of the vibration frequencies of the neighboring atoms of the dislocation when the 

dislocation crosses the obstacle. This term is poorly known. 

• The thermal dilatation of the lattice is typically an order of magnitude smaller than the one due to 

the elastic constants change (Surek et al., Scripta Met. 7 (1973) p. 1131). 

We again use the Leibniz relation (9.16), and the fact that we consider to be constant, we have: 

  

In the majority of cases, and are proportional to the shear modulus μ and vary with temperature 

as μ(T), so that we can write: 

 and  

 

where h and fμ do not explicitly depend on temperature, so that: 

  
 

From which expression (see (9.12) and (9.20)): 

  
Finally, the activation parameters previously defined must satisfy the compatibility relations: 

 

  
 

  
 

9.3.2 Analysis in terms of effective stress 
 

a) Introduction to an internal athermal" stress  

 

Expression (9.21) of the energy barrier implies that, in a strain test at a constant strain rate, the 

elastic yield strength must vary with the temperature T following the relation: 

 

  
 

This expression leads to the conclusion that beyond a specific critical temperature equal to: 

 

(9.26) 

(9.27) 

(9.28) 
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We must have . For such temperatures, thermal energy is only sufficient to exceed the energy 

barrier without the need for applied stress; the obstacles of height do not make any 

resistance against the gliding of the dislocation. On the contrary, experience rather indicates a 

variation with a non-zero athermal asymptote. This suggests writing as the sum of two 

stresses (Seeger, Dislocations and Mechanical Properties of Crystals, John Wiley and Sons (1957) 

p. 271): 

 

• one is due to the localized obstacles, that is called the effective stress, which varies with 

temperature by thermal activation; 

• the other is due to the internal" stress fields at long range , called internal stresses, responsible 

for the athermal asymptote. 

  

 
Figure 9-4: Evolution of the elastic yield stress (normalized) or flow stress as a function of temperature. We can notice 

an athermal asymptote σi/μ. 

 

Remarks: 

 

• Adding an effective stress and internal stress  we can determine the applied stress 

implicitly, assuming that the stress fields of these two kinds of obstacles superpose in the crystal 

(Figure 9-5), i.e., the stress is essentially nonlocalized as opposed to . 

• Consequently, the internal stress cannot correspond to any thermal activation. In other words,

is explicitly independent of temperature. Nevertheless, can depend implicitly on temperature 

through the shear modulus , to which is proportional. We often measure then by taking 

the value of the athermal asymptote of the curve as a function of T. 

(9.29) 

(9.30) 
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• The internal stress can equally depend on temperature from the way the structure of the 

dislocation distribution varies with T. However, this dependency should be weak since the statistical 

character of is little affected by the details of this distribution. 

The internal stress , opposed to the displacement of the dislocations, is assumed constant, which 

is a reasonable assumption for a mobile dislocation having a displacement at least of the order of l 

(the size of the lattice parameter). As discussed in the previous chapters, the internal stress can be 

schematically represented as a stress field oscillating in space around a zero mean value, with a two-

dimensional period of the order of l and amplitude (see 7.5.6): 

 

  

 
Figure 9-5: Variation of the stress field as a function of dislocation displacement. Effective stress and internal stresses 

superpose. 

 

In this stress field, the dislocation has a curvature R-1 sufficient to avoid the zones of maximum  

for a line tension  

 

For a displacement over a distance larger than or equal to l, it's difficult to cross zones where the 

stress is maximum. It is prevalent in studies on elastic yield stress and flow stress. In other studies 

for which the strains are small (the distances covered by the moving dislocations are small compared 

to the size of the Frank network), one must consider the internal effective" stress , which smooths 

those local variations. 

 

9.4 Measure of thermodynamic quantities 
 

Different experimental setups can determine the thermodynamic quantities with variable 

temperatures, stresses, or strain rates. In general, to minimize the structural variations of the samples, 

we use different techniques in which parameters can be readily varied or held constant. 

 

Here, we consider the thermodynamic system of the entire sample, corresponding to the variables 

and , on which the experimenter can act directly. These variables are measured through 

different tests, such as strain, one-dimensional axial tensile or compressive, or bending tests. Two 

principal tests exist creep tests, in which we observe the strain rate as a function of time at several 
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temperatures and stresses (held constant and referred to as dead load tests), and strain tests at an 

imposed strain rate, in which we observe the stress as a function of the strain. These experiments can 

provide directly three kinds of parameters: 

 

. 

a) variation of the applied stress  

 

This parameter can be measured: 

 

• by jumps in the strain rates (Figure 9-6a) or in the relaxation of the stress (Figure 9-6b) during 

strain tests done at imposed constant strain rates; 

• by jumps in the stress during creep tests at constant temperature and stress (Figure 9-6c). 

 

The kinetics of plastic deformation previously introduced is: 

 
that is    

Recalling the expression of the activation volume Va: 

  

We can state that the quantity Vexp, which is measured by strain rate jumps or stress jumps during 

a creep test, is: 

  

Figure 9-6: Measure of the sensibility of the strain rate to the stress during imposed strain rate tensile testing: (a) by a 

jump in the strain rate, (b) by relaxation of the stress, (c) by a jump in the flow stress. 

 

Thus, the activation volume that is determined experimentally Vexp is only equal to the thermodynamic 

volume Va when the pre-exponential term is often expressed as: 

 

(9.31) 



 

page 186 chapter IX  Physics of materials 

  

With this assumption:  

and Va is only accessible when the term m kT/σa is negligible, i.e., generally far from the 

athermal plateau (where σa becomes small). 

 

b) Temperature variations  

 

This parameter can be measured during tests at imposed stress (creep): 

 

• by a jump in temperature (Figure 9-7a); 

• by conventional tests done at different temperatures (Figure 9-7b) 

 

During a creep test, we obtain by temperature jump: 

 

  
Now, we have that: 

  
 

We then measure the following: 

  
With: 

  
 

  

Figure 9-7: Variation in the creep speed realized during tests at imposed stress (creep) (a) by stress jump and (b) by 

temperature jump

(9.32) 

(9.33) 
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9.5 Climb of dislocations 
 

9.5.1 Introduction 
 

For edge dislocations to move outside their glide plane, matter must be removed or added to its extra 

half-plane (Figure 9-8) and (Figure 9-9). Nevertheless, the formation energy of an interstitial being, 

in general, is very high compared to that of a vacancy. As such, dislocation climb tends to be 

exclusively mitigated by the absorption or emission of vacancies. Dislocation climb can be essentially 

reduced to studying different fluxes of vacancies between the dislocation considered and the potential 

sources or sinks of vacancies, which are all free external surfaces, grain boundaries, and dislocations. 

These fluxes obey Fick's law and can be driven by the differences in concentration or the chemical 

potential of vacancies between different crystal sources. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-8: Climb by interstitial mechanism (* indicates the metastable position) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9-9: Climb by vacancy mechanism (* indicates the metastable position) 
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9.5.2 Geometric aspect of the climb 
 

Any dislocation with an edge character can be considered the limit of an extra half-plane," even 

though the corresponding atoms are not all located in the same plane. Thus, the dislocation climb 

corresponds to the removal (or the supply) of a given number of atoms equal to the volume bounded 

between the two half-planes and by the dislocation line with thickness b, equal to the Burgers vector 

of the dislocation (Figure 9-10). 

If the dislocation line L, with length l, forms an angle ψ with its Burgers vector ( ) and 

it moves perpendicularly to its glide plane (GP in the Figure) by a distance b , the volume of the 

absorbed (or emitted) atoms is: 

  
We can understand this by considering the two extreme cases of an edge dislocation and a screw 

dislocation. In the first case, one atom is absorbed per each atomic site; in the second case, there is 

no need to absorb atoms, and there is no climb, only gliding. 

 

To keep the notation simple, we suppose b = b  in what follows, and thus: 

 

  
 

corresponding to the number of atoms N in the volume Ω = b3: 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9-10: Atoms and atomic planes involved in the climb of a dislocation 

 

The absorption (or the emission) of vacancies is principally done at the level of the existing jogs, 

which have a concentration Cj equal to the number of jogs on the line over the number of possible 

sites, that is: 
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Remark: 

 

The distance b/(sinψ) represents the displacement of a jog during the absorption (or the emission) of 

a vacancy. Nevertheless, only a distance of the order of b corresponds effectively to the vacancy's 

absorption (or emission) during the displacement. The rest corresponds to a simple jog sliding (see 

9.5.5). In what follows, we consider an edge dislocation as simply sinψ = 1. 

 

9.5.3 Forces on a Dislocation 
 

The total force on a dislocation is obtained starting from the free energy of a crystal during the 

emission of the vacancy by the dislocation. The dislocation is a source of vacancies with potential μVd 

(the chemical potential of vacancies on the dislocation), which becomes μVc in the crystal, giving a 

change in free enthalpy: 

  
 

Several factors can influence this potential: 

 

• Vacancy concentration C in the crystal is different from the equilibrium concentration CV (4.28), 

which varies the source potential by:   

• Application of a stress σ on the crystal. This creates an elastic force on the dislocation. 

We note that Fe represents the Peach and Koehler force components in the climb plane of the 

dislocation. It corresponds, for example, to a compression of the crystal, which pushes up the extra 

plane of an edge dislocation, like a wet bar of soap squeezed in your hand. We usually consider Fe to 

be positive if it promotes the emission of vacancies from the dislocation. The work of the force Fe 

during the creation of vacancies is given (see section (7.5.1)) by the product of the force σb and the 

swept area dA during the displacement of a jog: 

 

  
 We then have the following: 

  
  

• Line tension. A dislocation showing a local curvature radius R, taken with a negative sign if the 

center of curvature is located in the extra half-plane, tends to emit vacancies to regain its equilibrium 

position. In this case, the line tension τ helps the formation of vacancies in the crystal. We know that 

(7.36). Thus, the chemical potential of the vacancy in the crystal decreases by a value equal 

to (τb2)/R. 

 

To summarize, if μVc is the chemical potential of a vacancy in the crystal, we have: 

 

  
 

(9.34) 

(9.35) 

(9.36) 

(9.37) 
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In the case of a straight dislocation, the variation of free energy during the creation of a vacancy is 

then: 

  
 

whereas the area swept by the line during this event equals: 

 

  
 

The quantity dG/dA has the units of a force per unit length and must be then considered as the force 

F per unit length applied on the dislocation line in its climb plane, that is, in this case: 

 

  
 

where the first term, Fe, represents the force due to the stresses, and the second term comes from the 

over- or under-concentration of vacancies and is called oversaturation or chemical force: 

 

  
 

The dislocation is in equilibrium when the force F is zero, which corresponds to a concentration of 

vacancies surrounding the dislocation equal to: 

  
 

and when the force F is different than zero, the dislocation moves in its climb plane. In the absence 

of thermal activation (T=0 K), the condition on the stress σ necessary for dislocation climb can be 

calculated by setting the work of the force F and the formation energy of a vacancy equal to each 

other, as follows: 

  

From which with and we get a stress σ within an order of a magnitude: 

 

  
 

That is close to the theoretical elastic yield stress (except for the dislocations closer to the screw type). 

We can deduce from this that the climb of dislocations is possible only with the help of thermal 

activation. Therefore, it is a relevant phenomenon only at high temperatures. 

 

 

9.5.4 Bardeen-Herring sources 
 

We now consider the case where the dislocation is bent without applying any force on the sample 

during the inflow of vacancies. The variation in free energy is given this time by: 

 

(9.38) 

(9.39) 

(9.40) 
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As before, dG/dA gives the force per unit length being applied on the dislocation: 

 

  
 

The line tension tends to bring back the dislocation to a straight configuration. Thus, the condition 

for which the dislocation can climb by the inflow of vacancies is only when: 

 

  
 

This mechanism is analogous to Frank-Read sources, but the oversaturation of vacancies does the 

climb. Thus, as already seen in 7.5.6b, taking τ = αμb2 and , we will have: 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9-11: Bardeen-Herring source by the climb of dislocations: the climb plane lies in the plane of the page 

 

Application 

Aluminum: implies . Thus, an 

oversaturation of 2% of vacancies can activate the sources with a length of 1 μm. 

 

 

9.5.5 Velocity of the climb of a dislocation 
 

We have seen that vacancies' absorption or emission occurs principally at the jogs. Therefore, we 

expect the dislocation climb velocity to be controlled by the Velocity of the jogs. 

 

(9.41) 
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a) General case 

 

When a jog moves along a dislocation of length l, the dislocation moves by a distance b in its climb 

plane (Figure 9-12). 

Figure 9-12: Climb of dislocation by the forward motion of a jog 

 

If Vj is the displacement velocity of the jog, the climb velocity of dislocation V is given by: 

  
This result must be multiplied by the number of jogs (nj) along the dislocation line, that is (see (9.34)): 

  
 

In this formulation, the problem comes down to finding the displacement velocity of the jogs. Then, 

each time that these absorb or emit a vacancy, they move by a distance b corresponding to a velocity: 

 

  

where is the difference between the vacancies emission frequency and absorption 

frequency, , hence: 

  
We must then evaluate Δν. This calculation is performed for a pure edge dislocation, as an additional 

screw component would make the situation more complex. 

 

b) Case of a jog on an edge dislocation 

 

 

The emission frequency of vacancies is related to the 

enthalpy necessary for a jog to emit a vacancy. 

 

This requires the jog to move from position C to position 

 C (Figure 9-13), which requires a formation energy /.  

 

In the presence of a force , this energy decreases by σb3 

(the work the applied stress does when C goes to  C ). 

 
Figure 9-13: Jog moving from C to C' 

 

(9.42) 

(9.43) 
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In this unstable situation (Figure 9-9), the vacancy must switch site with an atom from the lattice, 

resulting in an additional migration energy: . We can now obtain the emission frequency: 

 

  
 

For a jog to absorb a vacancy, the latter must be on a neighboring site for the switch to occur. The 

absorption frequency then equals the frequency of the jumps times the probability of finding a 

vacancy in an adjacent site, which gives:  

 

 

 

In the absence of stress, we must have at equilibrium, hence: 

  
 

corresponding to an equilibrium concentration of: 

  

If the concentration C is different from the equilibrium concentration , we have (9.39): 

 

  

  
Considering that (5.14): 

  
We finally get: 

  

where is the self-diffusion coefficient. 

 

Several cases can occur according to the values of and with respect to kT. 

 

i) and  <<  kT 

 

By expanding the exponentials, we get the following: 

   or else    

(9.44) 

(9.45) 

(9.46) 

(9.47) 

(9.48) 
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It is Einstein s relation (see chapter 5.4). In this case, the activation energy is equal to the self-

diffusion energy, possibly increased by the formation energy of jogs ( ). 

 

ii) >> kT and << kT 

 

We have: 

 or else  This case results in significant 

elastic forces, like those found at the front of a pileup of dislocations or those due to substantial 

dislocations concentrations. The activation energy is equal here to the self-diffusion energy minus 

the term σb3 and possibly increased by the formation energy of a jog. 

 

iii) << kT and >> kT 

 

In this case, we have: 

 

   or else   

 

We are here in the presence of an oversaturation of vacancies, is negative, and the activation 

energy is reduced to the self-diffusion energy, possibly even decreased by the oversaturation term. 

 

c) Particular case: jogs on a screw dislocation 

 

If we consider jogs (outside of the climb plane) on an edge dislocation, we can notice that there is no 

possible way for these to affect the motion of the dislocation. On the contrary, for screw dislocations, 

jogs always have an edge character, and as a consequence, they can only move by climb if they are 

to preserve their Burgers vector. However, if the dislocations move in another plane, it can drag the 

jog segment, leaving a line of vacancies or interstitial defects, according to the sign of the jog. 

 

Figure 9-14: Climb of a screw dislocation with jogs 

 

(9.49) 

(9.50) 

Vacancies 
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If we consider the case in Figure 9-14, we can implement the form used in § 9.5.5a by taking into 

account that this time, the external stress acts on jogs of length l and as a consequence  

 

If σb3 and << kT, we have a 

relation of Einstein s kind: 

 

  or else  

 

9.5.6 Climb governed by diffusion in the crystal 
 

Until now, we have essentially considered that the absorption or the emission of vacancies by jogs 

controls the climb velocity of a dislocation. However, these velocities were relatively low compared 

to the arriving or leaving speed. 

 

Inverting this approach, we can ask ourselves. What happens when the absorption velocity of 

vacancies is high compared to their arriving Velocity? In this case, we can show that the climb of the 

dislocation depends on the self-diffusion coefficient and the activation volume of a vacancy σb3. 

 

We consider this a straight-edge dislocation in a crystal, and we suppose the vacancies have their 

equilibrium concentration on a cylinder with a radius around the dislocation. In a radius R1 of 

some multiples of b, the probability of absorbing the vacancy is assumed to be 1. 

We get: 

  
 

being the stress in the climb plane. Assuming (which is often a good approximation) 

and taking , we get: 

 

  
 

9.5.7 Application to stationary creep 
 

(9.51) 

(9.52) 

(9.53) 
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What we call stationary creep corresponds to the linear part of 

Figure 9-15. It occurs for higher stresses than in the case of 

Nabarro-Herring creep (see exercise 6). 

 

Most of the strain comes from the gliding of dislocations, 

during which obstacles progressively block them. The climb 

for dislocation with non-screw character (or the cross-slip for 

screw dislocations) can help release these dislocations and 

glide until the next obstacle. 

 

 

 
Figure 9-15: Creep curve 

The steady state of creep results in a dynamic equilibrium between blocking and releasing, which 

alternatively means that the gliding of dislocations is controlled by the climb motion (or the cross-

slip) at the obstacles (Figure 9-16). 

Figure 9-16: Glide scheme of a dislocation crossing obstacles by climb motion 

 

The flight time or glide time between two obstacles is very short compared to the escape time. On 

the other hand, the distance l between obstacles is larger than the distance h to be covered by climb 

(or cross-slip). The average Velocity is then written as: 

 

  
 

where is the escape velocity, a characteristic of the mechanism controlling the releasing of 

dislocations, Orowan s law gives here a strain rate of: 

 

  
 

If we consider that the obstacles are the dislocations of the forest and that the density ρm of mobile 

dislocations is a constant fraction of the total dislocation density Λ and that the same goes for the 

forest s density Λm, then. 

  

(9.54) 
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where is the mean distance between the obstacles. At steady state, we have: 

 

  
 

which can be written in a non-dimensional form as a function of σ/µ: 

 

   
We get the following: 

  
 

If finally, we admit that - even though l and h could depend on σ, ( ) does not: 

 

  
 

This expression depends on the escape velocity (this value was previously calculated for climb 

velocities). For example, in the case in which the relaxation mechanism is controlled by climb, 

governed by the diffusion in the crystal (9.53): 

 

  
We then get: 

    (9.56) 

 

This type of creep is only an example. More refined assumptions can lead to equations that generally 

have the form (Dorn law): 

 

  (9.57) 

 

 

with exponents for the stress that could be different than n = 3. 

(9.55) 


